

Lecture 3.

Analytic geometry in the plane.

Cartesian coordinate system in the plane. The lines of the first order.

Rectangular Coordinate System is called as Cartesian coordinates system. Each point in the plane is assigned a pair of numbers called the coordinates of the point.

- To locate points in a plane, two perpendicular lines are used: a horizontal line called the **x-axis** and a vertical line called the **y-axis**.
- The **x-axis**, the **y-axis**, and all the points in their plane are called a **coordinate plane**.
- The point of intersection of the **x-axis** and the **y-axis** is called the **origin**. The origin is denoted by **O** with coordinates $(0, 0)$.
- The number to the left of the comma in an ordered pair is the **x-coordinate** of the point and indicates the amount of movement parallel to the **x-axis** from the origin. The movement is to the right if the number is positive and to the left if the number is negative. On the **x-axis**, values to the right are positive and those to the left are negative.

The number to the right of the comma in an ordered pair is the **y-coordinate** of the point and indicates the amount of movement perpendicular to the **x-axis**.

The movement is above the **x-axis** if the number is positive and below the **x-axis** if the number is negative. On the **y-axis**, values above the origin are positive and those below are negative.

- The **x-axis** and **y-axis** separate the coordinate plane into four regions called **quadrants**. The upper right quadrant is quadrant I, the upper left quadrant is quadrant II, the lower left quadrant is quadrant III, and the lower right quadrant is quadrant IV.
- The location of the point **A** in a plane is determined by two coordinates, written as an ordered pair, (x, y) . The first coordinate **x** of the point **A** is defined by dropping perpendicular on the axis **Ox**, the second coordinate **y** is defined by dropping perpendicular on the axis **Oy**.

The distance between two any points with coordinates (x_1, y_1) and (x_2, y_2) in the plane is given by formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

It is obtained with the help of the Pythagoras' Theorem

A Straight Line

Equation of a straight line has the next different forms:

1. Equation of a line with slope - **Slope-Intercept Form of a Straight Line**

$$y = mx + b,$$

where m is the slope of this line, b is the y -intercept of the line.

Parallel lines have the same **slope**.

Perpendicular lines have slopes that the its product is equals -1 .

Slope or gradient of a Line may be calculated by the formula

$$m = (y_2 - y_1) / (x_2 - x_1)$$

2. Point-Slope Form of a Straight Line - equation of the line passing through the point (x_1, y_1) , with the slope m

We use this form when we need to find the equation of a line passing through a point (x_1, y_1) with slope m :

$$y - y_1 = m(x - x_1)$$

3. Equation of the line passing through two given points
with coordinates (x_1, y_1) and (x_2, y_2)

$$y - y_1 = ((y_2 - y_1) / (x_2 - x_1)) / (x - x_1)$$

If y_2 isn't equal to y_1 , this equation is rewritten as

$$y - y_1 / (y_2 - y_1) = (x - x_1) / (x_2 - x_1)$$

4. General Form of a Straight Line

$$Ax + By + C = 0$$

It can be useful for drawing lines by finding the y -intercept when $x=0$ and the x -intercept if $y=0$.

5. Equation of a line in pieces. Let A, B, C aren't equal to zero. We can transform general equation $Ax + By + C = 0$ into the form $x/(-C/A) + y/(-C/B) = 1$.

Denoting $a = -C/A$ and $b = -C/B$, we obtain

$$x/a + y/b = 1$$

6. The normal form of the equation of a straight line:

$$x \cos \alpha + y \sin \alpha - p = 0$$

$\mu Ax + \mu By + \mu C = 0$. If $\mu: \mu A = \cos \alpha, \mu B = \sin \alpha, \mu C = -p$ we obtain normal form from general form
 $\mu = \pm 1/\sqrt{A^2 + B^2}$ μ - normalization factor

Perpendicular Distance from a Point to a Line

The distance from a point (m, n) to the line $Ax + By + C = 0$ is given by:

$$d = \frac{|Am + Bn + C|}{\sqrt{A^2 + B^2}}$$